Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Food Chem X ; 22: 101300, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38571574

RESUMO

The composition of volatile compounds in beer is crucial to the quality of beer. Herein, we identified 23 volatile compounds, namely, 12 esters, 4 alcohols, 5 acids, and 2 phenols, in nine different beer types using GC-MS. By performing PCA of the data of the flavor compounds, the different beer types were well discriminated. Ethyl caproate, ethyl caprylate, and phenylethyl alcohol were identified as the crucial volatile compounds to discriminate different beers. PLS regression analysis was performed to model and predict the contents of six crucial volatile compounds in the beer samples based on the characteristic wavelength of the FTIR spectrum. The R2 value of each sample in the prediction model was 0.9398-0.9994, and RMSEP was 0.0122-0.7011. The method proposed in this paper has been applied to determine flavor compounds in beer samples with good consistency compared with GC-MS.

2.
Food Chem X ; 22: 101259, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38444556

RESUMO

This research sought to examine how the physicochemical characteristics of soy globulins and different processing techniques influence the gel properties of soy yogurt. The goal was to improve these gel properties and rectify any texture issues in soy yogurt, ultimately aiming to produce premium-quality plant-based soy yogurt. In this research study, the investigation focused on examining the impact of 7S/11S, homogenization pressure, and glycation modified with glucose on the gel properties of soy yogurt. A plant-based soy yogurt with superior gel and texture properties was successfully developed using a 7S/11S globulin-glucose conjugate at a 1:3 ratio and a homogenization pressure of 110 MPa. Compared to soy yogurt supplemented with pectin or gelatin, this yogurt demonstrated enhanced characteristics. These findings provide valuable insights into advancing plant protein gels and serve as a reference for cultivating new soybean varieties by soybean breeding experts.

3.
Endocrine ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514591

RESUMO

BACKGROUND: Triglyceride-glucose (TyG) index, a simple surrogate marker for insulin resistance (IR), has been reported as an independent predictor of arterial structural damage and future cardiovascular events. The association between TyG index and endothelial dysfunction remains uncertain. OBJECTIVE: The purpose of this study was to investigate the association between TyG index and endothelial dysfunction. METHODS: Endothelial dysfunction was measured using flow-mediated dilation (FMD). A total of 840 subjects, who voluntarily accepted FMD measurement at the Health Management Department of Xuanwu Hospital from October 2016 to January 2020, were included in this study. TyG index was calculated as Ln [fasting triglyceride (TG)(mg/dL) × fasting plasma glucose (FPG) (mg/dL)/2]. RESULTS: The mean age was 59.92 ± 10.28 years and 559 (66.55%) participants were male. The TyG index was correlated with FMD values (P = 0.022). Each unit increment in TyG index was associated with lower FMD values (ß = -0.330, 95%CI -0.609 to -0.052, P = 0.020) after adjusting for covariates. Age (ß = -0.069, 95%CI -0.088 to -0.051, P < 0.001), female (ß = 0.592, 95%CI 0.172 to1.012, P = 0.006), smoking (ß = -0.430, 95%CI -0.859 to -0.002, P = 0.049) and hypertension (ß = -0.741, 95%CI -1.117 to -0.365, P < 0.001) were also independent predictors for endothelial dysfunction. A significant association between the TyG index and endothelial dysfunction was found only in populations younger than 60 years (ß = -0.843, 95%CI -1.371 to -0.316, P = 0.002), females (ß = -0.612, 95%CI -1.147 to -0.077, P = 0.025), and populations without diabetes mellitus (DM) (ß = -0.594, 95%CI -1.042 to -0.147, P = 0.009). CONCLUSIONS: Subjects with an elevated TyG index are more likely to have endothelial dysfunction, particularly in populations without DM.

4.
Environ Sci Technol ; 58(14): 6215-6225, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38546713

RESUMO

Globally, agricultural soils account for approximately one-third of anthropogenic emissions of the potent greenhouse gas and stratospheric ozone-depleting substance nitrous oxide (N2O). Emissions of N2O from agricultural soils are affected by a number of global change factors, such as elevated air temperatures and elevated atmospheric carbon dioxide (CO2). Yet, a mechanistic understanding of how these climatic factors affect N2O emissions in agricultural soils remains largely unresolved. Here, we investigate the soil N2O emission pathway using a 15N tracing approach in a nine-year field experiment using a combined temperature and free air carbon dioxide enrichment (T-FACE). We show that the effect of CO2 enrichment completely counteracts warming-induced stimulation of both nitrification- and denitrification-derived N2O emissions. The elevated CO2 induced decrease in pH and labile organic nitrogen (N) masked the stimulation of organic carbon and N by warming. Unexpectedly, both elevated CO2 and warming had little effect on the abundances of the nitrifying and denitrifying genes. Overall, our study confirms the importance of multifactorial experiments to understand N2O emission pathways from agricultural soils under climate change. This better understanding is a prerequisite for more accurate models and the development of effective options to combat climate change.


Assuntos
Gases de Efeito Estufa , Solo , Solo/química , Dióxido de Carbono/análise , Temperatura , Agricultura , Óxido Nitroso/análise
5.
J Environ Manage ; 353: 120236, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38310800

RESUMO

Excessive irrigation and nitrogen application have long seriously undermined agricultural sustainability in the North China Plain (NCP), leading to declining groundwater tables and intensified greenhouse gas (GHG) emissions. Developing low-input management practices that meet the growing food demand while reducing environmental costs is urgently needed. Here, we developed a novel nitrogen management strategy for a typical winter wheat-summer maize rotation system in the NCP under limited irrigation (wheat sowing irrigation only (W0) or sowing and jointing irrigation (W1)) and low nitrogen input (360 kg N ha-1, about 70 % of traditional annual nitrogen input). Novel nitrogen management strategy promoted efficient nitrogen fertilizer uptake and utilization by both crops via optimization of nitrogen fertilizer allocation between the two crops, i.e., increasing nitrogen inputs to wheat (from 180 to 240 kg N ha-1) while reducing nitrogen inputs to maize (from 180 to 120 kg N ha-1). Three-year field study demonstrated that integrated management practices combining novel nitrogen management strategy with limited irrigation increased annual yields and PFPN by 1.9-5.7 %, and reduced TGE by 55-68 kg CO2-eq ha-1 and GHGI by 2.2-10.3 %, without any additional cost. Our results provide agricultural operators and policymakers with practical and easy-to-scalable integrated management strategy, and offer key initiative to promote grain production in the NCP towards agriculture sustainable intensification with high productivity and efficiency, water conservation and emission reduction.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Triticum , Zea mays , Nitrogênio/análise , Fertilizantes , Agricultura/métodos , China , Solo
6.
ACS Omega ; 9(3): 3746-3757, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284029

RESUMO

Most dust suppressants used for buildings currently lack sufficient resistance to harsh conditions, such as high temperatures and wind erosion. To solve this problem, it is necessary to develop a new type of dust suppressant. In this study, the guar gum molecule was chemically modified to remove the active hydroxyl group in order to significantly improve the stability and adhesion of guar gum. Eventually, a composite dust suppressant was synthesized by incorporating a surfactant and an absorbent agent into modified guar gum. The functional groups of the reaction products were analyzed via infrared experiments, thus confirming the success of the modification. Wind erosion resistance and scanning electron microscopy experiments confirmed the improved bonding capabilities of the composite dust suppressant with dust particles. In experiments on wind erosion resistance, the dust fixation rate exceeded 50% after the application of the composite dust suppressant. The results of the thermogravimetric tests showed that the maximum mass loss rate of the samples with modified guar gum dust suppressants was 6.0% and 28% lower than those of the samples with unmodified guar gum dust suppressants and water, respectively. Furthermore, the tests conducted on pH value and corrosion resistance indicated that the pH value of this dust suppressant was comparable to that of tap water and demonstrated a similar rate of metal corrosion. The practical significance of this study is to improve the dust suppressant used in buildings, to improve the performance of dust suppressant and resistance to harsh environment, and to help to continuously improve the health of personnel and environmental protection during construction. The practical significance of this study is to improve the dust suppressant used in buildings, to improve the performance of dust suppressant and resistance to harsh environments, and to help to continuously improve the health of personnel and environmental protection during construction, which has positive practical significance for the building industry and related fields.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38242426

RESUMO

The core clinical characteristics of autism, which is a neurodevelopmental disease, involve repetitive behavior and impaired social interactions. Studies have shown that the Notch and Neuregulin1 (NRG1) signaling pathways are abnormally activated in autism, but the mechanism by which these two signaling pathways interact to contribute to the progression of autism has not been determined. Our results suggest that the levels of Notch1, Hes1, NRG1, and phosphorylated ErbB4 in the cerebellum (CB), hippocampus (HC), and prefrontal cortex (PFC) were increased in rats with valproic acid (VPA)-induced autism compared to those in the Con group. However, 3, 5-difluorophenyl-L-alanyl-L-2-phenylglycine tert-butyl (DAPT), which is a Notch pathway inhibitor, ameliorated autism-like behavioral abnormalities and decreased the protein levels of NRG1 and phosphorylated ErbB4 in rats with VPA-induced autism; these results demonstrated that the Notch1/Hes1 pathway could participate in the pathogenesis of autism by regulating the NRG1/ErbB4 signaling pathway. Studies have shown that the Notch pathway regulates microglial differentiation and activation during the onset of neurological disorders and that microglia affect autism-like behavior via synaptic pruning. Therefore, we hypothesized that the Notch1/Hes1 pathway could regulate the NRG1/ErbB4 pathway and thus participate in the development of autism by regulating microglial functions. The present study showed that AG1478, which is an ErbB4 inhibitor, ameliorated the autism-like behaviors in a VPA-induced autism rat model, reduced abnormal microglial activation, and decreased NRG1 and Iba-1 colocalization; however, AG1478 did not alter Notch1/Hes1 activity. These results demonstrated that Notch1/Hes1 may participate in the microglial activation in autism by regulating NRG1/ErbB4, revealing a new mechanism underlying the pathogenesis of autism.


Assuntos
Transtorno Autístico , Quinazolinas , Tirfostinas , Animais , Ratos , Transtorno Autístico/induzido quimicamente , Neuregulina-1 , Microglia , Ácido Valproico , Fatores de Transcrição HES-1 , Receptor Notch1
8.
Sci China Life Sci ; 67(4): 680-697, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38206438

RESUMO

The study of tumor nanovaccines (NVs) has gained interest because they specifically recognize and eliminate tumor cells. However, the poor recognition and internalization by dendritic cells (DCs) and insufficient immunogenicity restricted the vaccine efficacy. Herein, we extracted two molecular-weight Astragalus polysaccharides (APS, 12.19 kD; APSHMw, 135.67 kD) from Radix Astragali and made them self-assemble with OVA257-264 directly forming OVA/APS integrated nanocomplexes through the microfluidic method. The nanocomplexes were wrapped with a sheddable calcium phosphate layer to improve stability. APS in the formed nanocomplexes served as drug carriers and immune adjuvants for potent tumor immunotherapy. The optimal APS-NVs were approximately 160 nm with uniform size distribution and could remain stable in physiological saline solution. The FITC-OVA in APS-NVs could be effectively taken up by DCs, and APS-NVs could stimulate the maturation of DCs, improving the antigen cross-presentation efficiency in vitro. The possible mechanism was that APS can induce DC activation via multiple receptors such as dectin-1 and Toll-like receptors 2 and 4. Enhanced accumulation of APS-NVs both in draining and distal lymph nodes were observed following s.c. injection. Smaller APS-NVs could easily access the lymph nodes. Furthermore, APS-NVs could markedly promote antigen delivery efficiency to DCs and activate cytotoxic T cells. In addition, APS-NVs achieve a better antitumor effect in established B16-OVA melanoma tumors compared with the OVA+Alum treatment group. The antitumor mechanism correlated with the increase in cytotoxic T cells in the tumor region. Subsequently, the poor tumor inhibitory effect of APS-NVs on the nude mouse model of melanoma also confirmed the participation of antitumor adaptive immune response induced by NVs. Therefore, this study developed a promising APS-based tumor NV that is an efficient tumor immunotherapy without systemic side effects.


Assuntos
Vacinas Anticâncer , Melanoma , Camundongos , Animais , 60547 , Melanoma/patologia , Células Dendríticas , Adjuvantes Imunológicos/farmacologia , Imunoterapia , Antígenos , Polissacarídeos/química , Camundongos Endogâmicos C57BL
9.
Plant Cell Environ ; 47(5): 1575-1591, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38269615

RESUMO

The spike growth phase is critical for the establishment of fertile floret (grain) numbers in wheat (Triticum aestivum L.). Then, how to shorten the spike growth phase and increase grain number synergistically? Here, we showed high-resolution analyses of floret primordia (FP) number, morphology and spike transcriptomes during the spike growth phase under three light regimens. The development of all FP in a spike could be divided into four distinct stages: differentiation (Stage I), differentiation and morphology development concurrently (Stage II), morphology development (Stage III), and polarization (Stage IV). Compared to the short photoperiod, the long photoperiod shortened spike growth and stimulated early flowering by shortening Stage III; however, this reduced assimilate accumulation, resulting in fertile floret loss. Interestingly, long photoperiod supplemented with red light shortened the time required to complete Stages I-II, then raised assimilates supply in the spike and promoted anther development before polarization initiation, thereby increasing fertile FP number during Stage III, and finally maintained fertile FP development during Stage IV until they became fertile florets via a predicted dynamic gene network. Our findings proposed a light regimen, critical stages and candidate regulators that achieved a shorter spike growth phase and a higher fertile floret number in wheat.


Assuntos
Flores , Triticum , Flores/fisiologia , Triticum/fisiologia , Perfilação da Expressão Gênica , Grão Comestível/genética , Fertilidade , Transcriptoma/genética
10.
Sci Rep ; 14(1): 174, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168773

RESUMO

Xanthine oxidase (XO) is a crucial enzyme in the development of hyperuricemia and gout. This study focuses on LWM and ALPM, two food-derived inhibitors of XO. We used molecular docking to obtain three systems and then conducted 200 ns molecular dynamics simulations for the Apo, LWM, and ALPM systems. The results reveal a stronger binding affinity of the LWM peptide to XO, potentially due to increased hydrogen bond formation. Notable changes were observed in the XO tunnel upon inhibitor binding, particularly with LWM, which showed a thinner, longer, and more twisted configuration compared to ALPM. The study highlights the importance of residue F914 in the allosteric pathway. Methodologically, we utilized the perturbed response scan (PRS) based on Python, enhancing tools for MD analysis. These findings deepen our understanding of food-derived anti-XO inhibitors and could inform the development of food-based therapeutics for reducing uric acid levels with minimal side effects.


Assuntos
Aprendizado Profundo , Hiperuricemia , Humanos , Xantina Oxidase , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores Enzimáticos/química , Hiperuricemia/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/uso terapêutico
11.
J Exp Bot ; 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38069503

RESUMO

Within a spike of wheat, central spikelet usually generates 3-4 fertile florets, while basal spikelet hardly achieves it; in fact, the physiological and transcriptional mechanism behind the difference in fertility between basal and central spikelet is unclear. This study reports a high temporal-resolution investigation of transcriptomes, number and morphology of floret primordia and physiological traits. The W6.5-W7.5 stage was regarded as a boundary domain to distinguish between fertile and abortive potential of floret primordia; those floret primordia reaching the W6.5-7.5 stage during differentiation phase (3-9 days after terminal spikelet stage, DAT) usually developed into fertile florets in the next dimorphism phase (12-27 DAT), whereas the others aborted. Central spikelet had a greater number of fertile florets than basal spikelet, which was associated with more floret primordia reaching the W6.5-7.5 stage. Physiological and transcriptional results demonstrated that central spikelet had a higher sucrose content, lower abscisic acid (ABA) and jasmonic acid (JA) accumulation than basal spikelet due to down-regulation of genes involved in ABA and JA synthesis. Collectively, we proposed a model in which ABA and JA accumulation was induced under limiting sucrose availability (basal spikelet) through up-regulating genes involved in ABA and JA synthesis; this led to floret primordia in basal spikelet hardly to reach fertile potential (W6.5-7.5 stage) during differentiation phase and then aborted. This fertility repression module may also regulate spikelet fertility in other cereal crops and potentially provide genetic resources to improve spikelet fertility.

12.
Food Res Int ; 173(Pt 1): 113218, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803536

RESUMO

High hydrostatic pressure (HHP) is extensively utilized in the field of food processing due to its remarkable ability to preserve the freshness of food. The potential antigenicity of ß-lactoglobulin (ß-LG) in whey protein isolate (WPI, 3%) treated by HHP was detected by enzyme linked immunosorbent assay (ELISA) using monoclonal antibodies. Furthermore, the impact of pressure-induced structural alterations on the emulsification properties and antioxidant activity of WPI was investigated. The findings revealed that pressures exceeding 300 MPa resulted in molecular aggregation, the formation of inter-molecular disulfide bonds, and an increase in surface hydrophobicity (H0). The percentage of ß-sheet decreased along with the pressure. The results showed the increment of α-helix and ß-turn with pressure. ELISA demonstrated a significant reduction in the antigenicity of ß-LG following HHP treatment (100-600 MPa), with a slight recovery observed at 300 MPa. These spatial structural modifications led to the unfolding of the ß-LG molecule, thereby enhancing its digestibility. Moreover, HHP treatment substantially improved the antioxidant properties, with the exposure to hydrophobic amino acids contributing to increased antioxidant properties and emulsion stability.


Assuntos
Antioxidantes , Lactoglobulinas , Proteínas do Soro do Leite , Antioxidantes/química , Pressão Hidrostática , Lactoglobulinas/química , Interações Hidrofóbicas e Hidrofílicas
13.
Appl Microbiol Biotechnol ; 107(23): 7347-7364, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37747613

RESUMO

Plant roots and rhizosphere soils assemble diverse microbial communities, and these root-associated microbiomes profoundly influence host development. Modern wheat has given rise to numerous cultivars for its wide range of ecological adaptations and commercial uses. Variations in nitrogen uptake by different wheat cultivars are widely observed in production practices. However, little is known about the composition and structure of the root-associated microbiota in different wheat cultivars, and it is not sure whether root-associated microbial communities are relevant in host nitrogen absorption. Therefore, there is an urgent need for systematic assessment of root-associated microbial communities and their association with host nitrogen absorption in field-grown wheat. Here, we investigated the root-associated microbial community composition, structure, and keystone taxa in wheat cultivars with different nitrogen absorption characteristics at different stages and their relationships with edaphic variables and host nitrogen uptake. Our results indicated that cultivar nitrogen absorption characteristics strongly interacted with bacterial and archaeal communities in the roots and edaphic physicochemical factors. The impact of host cultivar identity, developmental stage, and spatial niche on bacterial and archaeal community structure and network complexity increased progressively from rhizosphere soils to roots. The root microbial community had a significant direct effect on plant nitrogen absorption, while plant nitrogen absorption and soil temperature also significantly influenced root microbial community structure. The cultivar with higher nitrogen absorption at the jointing stage tended to cooperate with root microbial community to facilitate their own nitrogen absorption. Our work provides important information for further wheat microbiome manipulation to influence host nitrogen absorption. KEY POINTS: • Wheat cultivar and developmental stage affected microbiome structure and network. • The root microbial community strongly interacted with plant nitrogen absorption. • High nitrogen absorption cultivar tended to cooperate with root microbiome.


Assuntos
Microbiota , Triticum , Triticum/microbiologia , Nitrogênio , Raízes de Plantas/microbiologia , Microbiologia do Solo , Solo/química , Bactérias , Archaea , Rizosfera
14.
Nat Commun ; 14(1): 4798, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558718

RESUMO

UBA1 is the primary E1 ubiquitin-activating enzyme responsible for generation of activated ubiquitin required for ubiquitination, a process that regulates stability and function of numerous proteins. Decreased or insufficient ubiquitination can cause or drive aging and many diseases. Therefore, a small-molecule enhancing UBA1 activity could have broad therapeutic potential. Here we report that auranofin, a drug approved for the treatment of rheumatoid arthritis, is a potent UBA1 activity enhancer. Auranofin binds to the UBA1's ubiquitin fold domain and conjugates to Cys1039 residue. The binding enhances UBA1 interactions with at least 20 different E2 ubiquitin-conjugating enzymes, facilitating ubiquitin charging to E2 and increasing the activities of seven representative E3s in vitro. Auranofin promotes ubiquitination and degradation of misfolded ER proteins during ER-associated degradation in cells at low nanomolar concentrations. It also facilitates outer mitochondrial membrane-associated degradation. These findings suggest that auranofin can serve as a much-needed tool for UBA1 research and therapeutic exploration.


Assuntos
Enzimas de Conjugação de Ubiquitina , Ubiquitina , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Auranofina/farmacologia , Ubiquitinação , Enzimas Ativadoras de Ubiquitina/metabolismo
15.
Neuropharmacology ; 239: 109682, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37543138

RESUMO

As a pervasive neurodevelopmental disease, autism spectrum disorder (ASD) is caused by both hereditary and environmental elements. Research has demonstrated the functions of the Notch pathway and DNA methylation in the etiology of ASD. DNA methyltransferases DNMT3 and DNMT1 are responsible for methylation establishment and maintenance, respectively. In this study, we aimed to explore the association of DNA methyltransferases with the Notch pathway in ASD. Our results showed Notch1 and Hes1 were upregulated, while DNMT3A and DNMT3B were downregulated at the protein level in the prefrontal cortex (PFC), hippocampus (HC) and cerebellum (CB) of VPA-induced ASD rats compared with Control (Con) group. However, the protein levels of DNMT3A and DNMT3B were augmented after treatment with 3,5-difluorophenacetyl-L-alanyl-S-phenylglycine-2-butyl ester (DAPT), suggesting that abnormal Notch pathway activation may affect the expression of DNMT3A and DNMT3B. Besides, our previous findings revealed that the Notch pathway may participate in development of ASD by influencing autophagy. Therefore, we hypothesized the Notch pathway adjusts autophagy and contributes to ASD by affecting DNA methyltransferases. Our current results showed that after receiving the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (5-Aza-2'dc), the VPA + DAPT+5-Aza-2'dc (V + D + Aza) group exhibited reduced social interaction ability and increased stereotyped behaviors, and decreased expression of DNMT3A, DNMT3B and autophagy-related proteins, but did not show changes in Notch1 and Hes1 protein levels. Our results indicated that the Notch1/Hes1 pathway may adjust DNMT3A and DNMT3B expression and subsequently affect autophagy in the occurrence of ASD, providing new insight into the pathogenesis of ASD.


Assuntos
Transtorno do Espectro Autista , Ácido Valproico , Ratos , Animais , Ácido Valproico/farmacologia , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/genética , Metilação de DNA , Transdução de Sinais , Metilases de Modificação do DNA/metabolismo , DNA/metabolismo , Autofagia , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo
17.
Clin Cardiol ; 46(10): 1260-1267, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37522647

RESUMO

BACKGROUND: The cardiovascular risk models and subclinical atherosclerotic indicators are both recommended for cardiovascular risk stratification. The accordance between the incidence of subclinical atherosclerosis and subjects with low and moderate cardiovascular risk is unclear. HYPOTHESIS: Subjects with low and moderate cardiovascular risk have a lower incidence of subclinical atherosclerosis compared with subjects with high risk. METHODS: Brachial-ankle pulse wave velocity (BaPWV) and brachial flow-mediated dilation (BFMD) were measured in 421 subjects without a history of atherosclerotic cardiovascular disease (ASCVD) from October 2016 to January 2020. All subjects were classified into low, moderate, and high risk based on Framingham and China-par risk models respectively. RESULTS: Mean age was 57.05 ± 9.35 years and 248 (58.9%) were male. In subjects with low, moderate, and high risk assessed by Framingham and China-par risk models, the percentage of abnormal BaPWV ( > 1400 cm/s) was 42.9%, 70.1%, 85.7%, and 40.4%, 71.4%, 89.7%, respectively. Meanwhile, the percentage of abnormal BFMD ( ≤ 7%) was 43.8%, 68.5%, 77.3%, and 44.9%,72.1%, and 76.6%. According to Framingham-based high-risk categories, positive predictive value (PPV), negative predictive value (NPV), sensitivity and specificity for BaPWV abnormality were 85.7%, 39.4%, 36.1%, and 87.5%, respectively. For BFMD abnormality, the values were 77.3%, 40.1%, 34.1%, and 81.8%, respectively. According to China-par high-risk categories, the values for BaPWV abnormality were 89.7%, 43.8%, 45.6%, and 89.0%, respectively. For BFMD abnormality, the values were 76.6%, 41.3%, 40.7%, and 77%, respectively. In multivariate analysis, age and blood pressure were the independent predictors for subclinical atherosclerosis in subjects with low-moderate risk. CONCLUSIONS: More than one-half of subjects with low and moderate risk already have detectable subclinical atherosclerosis, indicating higher cardiovascular risk beyond the traditional stratification.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Índice Tornozelo-Braço , Incidência , Fatores de Risco , Análise de Onda de Pulso/efeitos adversos , Aterosclerose/diagnóstico , Aterosclerose/epidemiologia , Aterosclerose/complicações , Fatores de Risco de Doenças Cardíacas
18.
Plant Cell Environ ; 46(11): 3628-3643, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37485926

RESUMO

The developmental process of spike is critical for spike fertility through affecting floret primordia fate in wheat; however, the genetic regulation of this dynamic and complex developmental process remains unclear. Here, we conducted a high temporal-resolution analysis of spike transcriptomes and monitored the number and morphology of floret primordia within spike. The development of all floret primordia in a spike was clearly separated into three distinct phases: differentiation, pre-dimorphism and dimorphism. Notably, we identified that floret primordia with meiosis ability at the pre-dimorphism phase usually develop into fertile floret primordia in the next dimorphism phase. Compared to control, increasing plant space treatment achieved the maximum increasement range (i.e., 50%) in number of fertile florets by accelerating spike development. The process of spike fertility improvement was directed by a continuous and dynamic regulatory network involved in transcription factor and genes interaction. This was based on the coordination of genes related to heat shock protein and jasmonic acid biosynthesis during differentiation phase, and genes related to lignin, anthocyanin and chlorophyll biosynthesis during dimorphism phase. The multi-dimensional association with high temporal-resolution approach reported here allows rapid identification of genetic resource for future breeding studies to realise the maximum spike fertility potential in more cereal crops.


Assuntos
Flores , Triticum , Flores/fisiologia , Redes Reguladoras de Genes , Grão Comestível/genética , Fertilidade/genética
19.
J Cancer Res Clin Oncol ; 149(14): 13403-13416, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37495731

RESUMO

PURPOSE: It was of great significance to identify someone with a high risk of hepatocellular carcinoma (HCC) occurrence and make a diagnosis as early as possible. Therefore, we aimed to develop and validate a new, objective, and accurate prediction model, and convert it into a nomogram to make a personalized prediction of cancer occurrence in cirrhotic patients with different etiologies. METHODS: The present study included 938 patients with cirrhosis from January 1, 2011, to December 31, 2012. Patients were prospectively followed-up until January 1, 2018. We used a competing risk model and the Fine-Gray test to develop and validate the prediction model and to plot a nomogram based on the model established. RESULTS: At the end of follow-up, 202 (21.5%) patients developed HCC, with a 5-year incidence of 19.0% (corrected for competing risk model). Based on the competing risk regression method, we built a prediction model including age, gender, etiology, lymphocyte, and A/G ratio. Three groups with different risks were generated on account of tertiles of the 5-year risk predicted by the model. The cumulative 1-, 3-, and 5-year incidences of HCC were 2.0%, 20.8%, and 42.3% in high-risk group, 0.9%, 10.1%, and 17.7% in medium-risk group, and 0%, 2.0%, 8.5% in low-risk group (P < 0.001). The model showed excellent discrimination and calibration in predicting the risk of HCC occurrence in patients with all-cause cirrhosis. CONCLUSION: The model could make an individual prediction of cancer occurrence and stratify patients based on predicted risk, regardless of the causes of cirrhosis.

20.
Front Pharmacol ; 14: 1184183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408766

RESUMO

Introduction: Inflammatory bowel disease (IBD) affects about 7 million people globally, which is a chronic inflammatory condition of the gastrointestinal tract caused by gut microbiota alterations, immune dysregulation, genetic and environmental factors. Nanoparticles (NPs) deliver an active natural compound to a site harbored by disordered microbiota, they are used to interact, target and act intentionally on microbiota. Although there is accumulating evidence indicating that berberine and polysaccharide play an important role in IBD via regulating microbiota, there is limited research that presents a complete picture of exactly how their carrier-free co-assembled nanodrug affects IBD. Methods: The study establishes the carrier-free NPs formed by berberine and rhubarb polysaccharide based on the combination theory of Rheum palmatum L. and Coptis chinensis Franch., and characterizes the NPs. The IBD treatment efficacy of NPs are evaluated via IBD efficacy index, and explore the mechanism of NPs via 16S rRNA test and immunohistochemistry including occludin and zonula occludens-1. Results: The results showed that DHP and BBR were co-assembled to nanoparticles, and the BD can effectively relieve the symptoms of UC mouse induced by DSS via regulating gut microbiota and repair the gut barrier integrity, because BD have a longer retention on the colon tissue and react with the microbiota and mucus thoroughly. Interestingly, BD can enrich more probiotic than free BBR and DHP. Discussion: This design provides a better strategy and encourages future studies on IBD treatment via regulating gut microbiota and the design of novel plant polysaccharide based carrier-free co-assembly therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...